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ABSTRACT

Relativistic and zero point energy corrections are shown
to be absorbed in renormalizing phenomenological quark mass .
parameters appearing in quark model descriptions of baryon
and meson masses and baryon and magnetic moments and do not
affect successful relations. Analysis of small differences

between effective quark masses in mesons and baryons gives

two new successful relations between meson and baryon masses.
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A naive quark modell'2 has given a relation between

meson and baryon masses

Mpy—My =177 MeV=m_-m = (3/4) (Mp,-M)) + (1/4) (M -M ) = 189 Mev  (la)

’

and two relations for the magnetic moment of the A,

— = — \ _ _l
u, = -0.6ln.m. = (-1/3) [(l/”p) + 0, Mp)/Mp]
(1b)
= -0.61n.m.
my ,
]_1A = -0.61n.m. = --(Llp/?)) (ﬁ‘;)= "(Up/3) (MZ*+ ""MZ.{.)/(MA.'. —Mp) ( )
lc

-0.61 n.m.

Equation (la) is obtained from a universal mass formula for the

mass M of any hadron in terms of the masses of the constituent

h
quarks m, and a hyperfine interaction depending on their spins 3i

> >

0.0,

= + 1]

My Z my Z moa, <Yy (2a)
i 1> i j

where <Vij> is the value of the matrix element of the hyper-

fine interaction. Egs.(lb) and (lc) are obtained by assuming

that the magnetic moment My of a quark with electric charge

ey is given by

Wy = ei(Mp/mi) nuclear maghetons (2b)

This remarkable agreement is very surprising in view of
known neglected effects considerably larger than the differ-
ence between the‘theorétical and experimental values. It
can be understood only if these neglected effects conspire

to give contributions absorbed in the definition of the quark

mass parameters m, which are not determined by first




principles but by fitting data. These quark mass parameters
appear in both terms in Eg. (2a) and in Eq.(2b); i.e. as direct
contributions to hadron masses, as coefficients in the strong
hyperfine interaction responsible for spin splittings, and in
the magnetic moments. The success of Egs. (1) imply that the

corrections to m; in all three places in Eq. (2) for baryons

and in the first term of Eq.(2a) for mesons are nearly the
same. Note that Egs. (1) do not involve the second term in
Eg. (2a) nor Eq. (2b) for mesons.
| We consider zero point kinetic and potential energies
and relativistic effects neglected in Egs.(2) and show that
although these are large, their main contribution can be
absorbed by changing the values of the mass parameter my
in nearly the same way for mesons and baryons in the first
term of Eg.(2a) and in the magnetic moment (2b). We find
that the small difference in m, between mesons and baryons
does not affect the relation (la) because m and m, are
shifted by about the same amount, and does not éffect Egs. (1b)
and (lc) which involve only baryons. But this difference is
observable in other experimental quantities calculated explicitiy
below to give two new relations which agree with experiment.
The first relation compares the calculated difference between
the first term of Eq.(2a) for mesons and baryons with experi-

ment by using spin averaged meson and baryon masses.

=g = 53 MeV 3a)

[mi(bar)-mi(mes)]theoi > log (2/V3) 53 Me (3a
M(A 3M(p) +M(m)

[mi(bar) —-mi(mes)]exp = M) Z (a) _ - = 54.5+1.5 MeV

(3b)



where U==733VMeV is the strength of the Quigg-Rosner logar-
ithmic potentia15’6, determined by fitting the VY -Y¥' splitting.
The effect of this small correction on the quark mass differ-
ence in Eq.(la) is shown to be negligible. But the effect on
the quark mass ratio (ms/mu) used in Eqg. (lc) is appreciable,

and explains why the prediction analogous to (Lc) using meson
masses is not successful.

The ratio of meson mass differences analogous to the
baryon masses in Eg.{(lc) should be set equal to the quark
mass ratio (ms/mu) in mesons, corrected for the meson-baryon
difference (3a). We thus obtain a second new relation by
correcting the baryon values mS==513 MeV and m, =366 MeV
determined from baryon magnetic moments,

(3c)

ms(mes) (—Mp/3uA)-53
= 1.62 = (Mpo ~MWO)/(MK*+—MK+)=l.613:0.01

m_(mes) - (Mp/up)-53

This should be compared with the old baryon relation which is

a rearrangement of Eq. (lc)

m_(bar) -M_/3u | |
s N o) A _ _ Ly _
m (bar) ~ M_/u = 1.53 = (M4 Mp)/(Mz*+ M 4) = 1.53£0.01 . (34)

The essential physics underlying theée two new predictions
is that the effective guark mass parameter is smaller in mesons
than in baryons because the stronger guark-antiquark force in
the mesons gives stronger binding than in baryons and brings
the interacting pairs closer together where the potential is
stronger. This increased binding appears not only as a reduction

in the total mass but also in the quark mass parameter which




determines the spin splittings via the color magnetic inter-
action

We now derive these results explicitly by calculating
the zero point energy in meson and baryon systems in the
quasinuclear model of Refé.(l,Z) as the ground state expecta-
tion value of the Hamiltonian for a system of n particles
interacting with a two-body color exchange logarithmic potential

p?
E, = {HY = <Z my + Z ﬁ“"‘ Z Ukijlog(rij/r0)> . (4)
i i i 1i>]

where kij is a color factor. The rest mass contribution
to the energy is included, but the non-relativistic expression
for the kinetic energy is used. The spin-dependent contribu-
tion has been averaged out to give the zero point energy
for the appropriate spin averages of the hadron masses used
in Eqs. (1) and (3). Evaluating the color factors and using
the virial theorem gives a result valid for any n-body color-

’

singlet bound state of guarks and antiquarks with complete

symmetry between the n constituents.

U 1 ]
= 4 = —
Eo(n) n[m 5 U<log(r/ro)>n (5)
To the extent that the variation in {log r) from one
hadron to another can be neglected, the zero point energy
and the hadron masses are proportional to n, giving the
familiar "quark counting" 3/2 ratio for baryon to meson

masses. The relation (3a) is just the correction to this

3/2, determined from the difference in {log(r)) between



mesons and baryons. The value 2//3 comes from the

-

assumption that r scales like (p2) between mesons and
baryons and using the scaling factor for p2 from the
virial theorem in Refs. (1,2).

The change in effective quark mass (3) between mesons
and baryons is independent of quark flavor and cancels in
any flavor-dependence relation analogous to (1) between
hadrons like p, 4, ¢ or & in which all constituents
have equal mass. Corrections to (1) from zero point energies
can arise in hadrons like K, kK* or A which contain both
u and s-quarks. To estimate these corrections we use the

Feynman-Hellmann theorem for the change in the mass of a

hadron h with a change Gmi in the mass of quark i,

My = <8H/8mi>h6m = [1 - <(ti/mi)>h]6mi (6)

where ti is the kinetic energy of particle 1i. This can

be simplified by using the virial theorem and substituting

t, = tiel(n-l)mj/Dni4-(n—l)mj] (7a)

(7b)

oM, = [1 - n(tiel)/@‘){ ;1; L } (U/4)]6mi

m, + (n-—l)mj

where T is the total kinetic energy and tiel is the kinetic

energy of the relative motion of particle i with respect to
the n-1 other particles which are assumed to have equal
masses denoted by mj.

An exact relation for (tiel>/<T> in the baryon case is
obtainable only by solving the three-body problem. However,

good approximate estimates and upper and lower bounds for the

corrections to Eg. (1) are obtained by use of the relation




m.,
1> = (n-1)<ef®h) - (n~l +f><ti> ®
J

This relation (8) is exact for the meson case and for a
symmetric baryon state with equal contributions from all
quarks to the baryon kinetic energy. Substituting (8) into
(7) and integrating between limits i and f where all
quarks initially have equal mass m, and £he mass of one

quark is changed to Mg gives

H

. U
Mh(f)-Mh(l) (mf_mi)"(ZYE:IT log[nmf/[mf-+(n—l)mi]]

(9)

(mf—mi)-—(ZT%%IT)log[l-+(n-l)(mf—mi)/(mf-+(n—l)mi)].

fi

This result is exact for mesons but holds in the baryon case
only for equal masses. However, the relation (8) should not
change very much with mass in view of the stabilizing effect
of the log potential which holds kinetic energies fixed when
masses change. In any case an‘increase in oy should change
the equipartition of kinetic energies in the direction to
decrease tiel and thus increase SMh in Eg. (7). The
approximate result for baryons from Eg. (9) is thus also a

lower bound. Substituting n=2 and n =3 into Eq. (9) then

gives for the correction to Eq. (1)

l6mf(m +2m.)3

£
4
27(mf+mi)

[Mb(f) an(i)] - [Mm(f) -Mm(i)] > (U/8)log (10a)

A rigorous upper bound on Mb(f) is obtained by using



solutions for the equal mass case as trial variational wave

functions. This gives

(10b)

-
(mf—mi) (5mf+4mi)

[, (2) -y (1) - [ () “m_(1)] = (U/4)leg |1+ £
27(mf+mi) m

£

Setting U =733 MeV and mf/mi =ms/mu::3/2 in Egs.(10) gives
pounds of about *2 MeV. This is consistent with the experi-
mental validity of the relation (1), and demonstrates that
although zero-point energies of the order of 200 MeV were neg-
lected in the 6riginal derivation, the error introduced is only
of order onevper cent of the neglected zero point energy
because of the scaling properties between mesons and baryons.
Since the relation (1) has now been shown to hold with

mg -m, interpreted as an effective guark mass including zero

point‘enefgy, the empirical validity of the relations (2) suggests
that the same effective quark mass enters into the magnetic
moment. The contribution of a constant scalar potential has

peen shown to contribute to this effective mass,7 and the bag
models8 suggest that the zero point kinetic energy also contri-
butes for the case of no potential. To generalize these results
we consider a Dirac particle bound in an external potential

which varies in space and has both a Lorentz scalar component

s and a Lorentz four-vector component v and with a weak
external magnetic field H from a vector potential x.

The Dirac equation for this system is

[&.(ﬁ_ezi) +g(m +8S) +V-E]\¥ =0 (11)
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Sguaring the equation and réarranging terms leads to

an exact equation resembling the nonrelativistic Schroedinger

equation,

[(E—V+m+S)—1[(p~eA)2 +a.[g§, (p5+V) | —eh&’-ﬁ}+V+m+S]‘P=E\P (12)

The usual nonrelativistié treatment obtains a factor 1/2m
in both the kinetic energy and the magnetic moment by neg-
lecting V, S, and E-m relative to m. We consider the
full relativistic equation (12) and examine the dependence
of the‘energy on the J+H term treated as a perturbation.
Let us define an effective unperturbed Hamiltonian HO'

energy EO and wave function ¥y by

o <
H

(Eo~-V+m+S)_l{(§—eK)2+a-[5, (BS+V)] } +V+m+S (13a)

HY =E V¥ (13b)
o o0 o O )

Substituting Eq. (13) into Eq. (12) gives
_ -1 >
(E—HO)‘P— (E-V+m+8S) {(EO—E)(HO-—V—m—S)—-e’f‘z(O'H)}‘l’ . (14)
This equation is still exact. Taking the scalar product of Eg. (14)
with WO and keeping only terms to first order in the small

quantities G+E and E—EO then gives

{2(E_ -~V +m+ s)‘l(Eo ~V)(E-E_)) = -eh{(E_-V+m +8)718E>  (15)

We define the "effective quark mass" M fe by the relation

_ —>.—> _ .2
E-E_ = —eh (g H)/Zmef = ~)1+H (16)

From Egs. (15) and (16)



Megg = By ~VD-6v

where

(v -<vD) (v = 8) (B ~vimes)™H

&V

(B, +m) (B =V +m +5) "

For a Lorentz scalar potential, Eg.(l17) with V=0 1is
the generalization of the previous results7’8 that both the
zero point kinetic energy and the zero point potential energy
are included in the effective mass parameter appearing in
the magnetic moment. For the case of a Lorentz vector poten-
tial, the potential energy does not contribute in the approxi-
mation where V is neglected. This is in agreement with
the observation that the magnetic moment of an electron is
unchanged by the electrostatic potential of a Van-de-Graaf
accelerator and its motion is described by non-relativistic
equations if its velocity is small, even though it may be

bound by a potential many times its rest energy.

We therefore conclude that the quark mass difference in
Eq. (1) can be interpreted as a difference between effective
quark masses which include zero point kinetic and potential

energies. If the confinement potential which determines the

(17a)

(17b) -
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binding energy is Lorentz scalar, the same effective quark
mass also appears in the magnetic moments and justifies the
use of Egs. (2).

The expression (l7a) can be rewritten to exhibit an

expansion in powers of (v/c),

Meg = (m+ ¢8> + (T+5-{S>) -6V (18a)

where the kinetic energy T is defined as

T = EO-S-—VU—m , (18b)

The terms m and <S> are of order unity. T and S -<S)
are of order (V/C)z{ and &V is of order (V/C)4.

These results provide new insight into the successes of
the nonrelativistic quark model. Its two basic features are:
(1) No parameters are determined from first principles; all
are adjusted to fit data. (2) Effects apparently neglected
in the model are not small; however, their principal contribu-
tions are absorbed by a renormalization of the values of the
parameters. That such effects can be renormalized away is
non-trivial. The underlying physics is shown in Egs. (1-3) and
(17). That interaction energies can be absorbed in defining

the same effective gquark mass for both mesons and baryons follows

from the properties of the color exchange force and would not
hold for other forces. This result is implicitly contained in
1,2,9,10

Nambu's old mass formula for systems of quarks and

antiquarks interacting via an octet of colored gauge vector

gluons, which gave masses proportional to the number of con-



Toriamen

stituents, even when the interactions were included. The
relations between the "effective mass parameters" appearing

in the magnetic moment, the kinetic energy and the total energy
of a bound Dirac particle are inherent p:operties of the Dirac
egquation, and suggest that the confining potential must trans-
form under Lorentz transformations like a scalar rather than a
vector potential.

The coupling of a constituent quark to the electromagnetic
current is determined by a single coupling constant which by
gauge invariance is forced to be the eiectric charge of the
quark. This is not true for the weak couplings, where no con-
straint relates axial vector and vector couplings, even though

the basic theory has gy =9, for bare or '"current'" quarks.

The success of the prediction up/un==_3/2 and the failure

of the prediction (gA/gV)Nw=5/3 are both natural in this
approach, since the gA/gV prediction involves using coupling
constants from first principles for constituent quarks and
neglecting the necessary renormalization of parameters.

One remaining open question is the justification of the
empirical success of the Hamiltonian (3} with effective two-
body forces and no effective three-body forces for baryons.
The successes of the new relations between properties of mesons
and baryons as well as of old relations between baryon masses
based on only two-body effective forcesll indicate that the
additional complications resulting from the three-body nature
of the baryon are somehow négligible. Although there have

been attempts to interpret properties of baryons as more than

E O ARUERR LT TN BT s A 1 n et A e



an assembly of three quarks with two-body interactions, there

is as yet no convincing evidence for anything extra in the

baryon.
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